Optimierung von Milchproduktionssystemen mit frischem Wiesenfutter

Systemvergleich Hohenrain II

Futteraufnahme und Milchgehaltsschwankungen Franziska Akert

01.09.2017

Systemvergleich Milchproduktion - Hohenrain II

65

Inhalt

 Was haben die Kühe auf der Weide und im Stall an Futter aufgenommen?

Ansätze zur Schätzung der Wiesenfutteraufnahme

Was passiert nach dem Stall/Weide mit der Milch?

Eine Studie zur Milchgerinnungseigenschaften von Milch mit Wiesenfutter.

Schätzung Wiesenfutterverzehr (I)

Messung des Wiesenfutterverzehrs im Stall

 Punktuelle Messungen des durchschnittlichen Herdenverzehrs im Stall (4 x jährlich während 3 Tagen)

	ECM kg				Anza	hl Kühe	Leber	ndgewicht	Laktationsstadium	
	EGKF		EGKFplus		EGKF	EGKFplus	EGKF	EGKFplus	EGKF	EGKFplus
	MW	±Std	MW	±Std	n	n	MW	MW	MW	MW
2014	22.7	5.3	21.6	5.6	19	18	630	645	136	176
2015	24.5	7.0	24.1	6.0	19	22	627	637	135	161
2016	21.5	6.0	24.1	5.1	16	21	658	648	152	152
2014-16	22.9	6.1	23.3	5.6	18	20	638	643	141	163

01.09.2017

Systemvergleich Milchproduktion - Hohenrain II

67

Schätzung Wiesenfutterverzehr (II)

- Berechnung des Gesamtverzehrs gemäss Grünem Buch (Agroscope, 2015)
- Berechnung des Weidefutterverzehrs:

 $Ge samt verzehr-Kraft futter-Verzehr\ Eingrasen=Weideverzehr$

Schätzung Wiesenfutterverzehr (III)

	Gesamtverzehr kg TS						
	EGI	KF	EGKFplus				
	MW	±Std	MW	±Std			
2014	18.3	1.6	18.1	1.6			
2015	18.8	2.2	19.0	1.8			
2016	17.8	1.8	18.6	1.8			
2014-16	18.3	1.8	18.5	1.7			

01.09.2017

Systemvergleich Milchproduktion - Hohenrain II

69

Schätzung des Weidefutterverzehrs n-Alkanmethode

 Schätzung des Futterverzehrs auf der Weide mittels n-Alkanmethode

Untersuchung der Milchgerinnungseigenschaften

- Käsereimilch ist von grosser Bedeutung für die Schweizer Milchwirtschaft, besonders für Betriebe mit einem hohen Wiesenfutteranteil in der Ration
- Saisonaler Einfluss auf die Milchzusammensetzung bei einem hohen Anteil an frischem Wiesenfutter in der Ration

01.09.2017

Systemvergleich Milchproduktion - Hohenrain II

71

Material und Methoden

Tiere

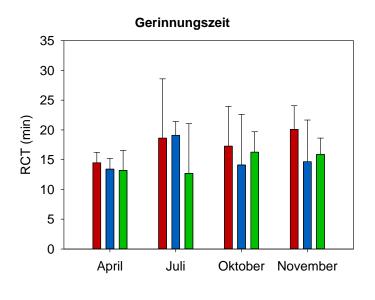
- Vegetationsperiode und Winter 2015
- Tiere in der Startphase zum Versuchsstart (EGKFplus = 37±8 d, EGKF = 64±9 d, VW = 64±23 d)

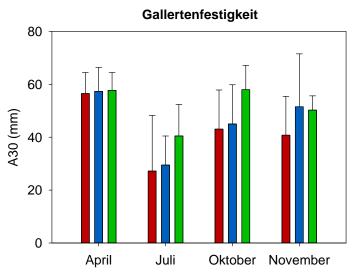
		April		Juli		Oktober		November (Winterfütterung)	
		MW	±SD	MW	±SD	MW	±SD	MW	±SD
Leistungs-	EGKFplus	3.5	±0.5	2.8	±0.7	1.0	±0.7	-	-
futter (kg TS / Tag	EGKF	3.0	±1.4	-	-	-	-	-	-
und Kuh)	VW	-	-	-	-	-	-	-	-
	EGKFplus	27	±1.9	21	±2.4	20	±3.3	20	±6.2
(kg / Tag)	EGKF	27	±5.8	19	±3.2	19	±3.5	16	±3.2
(g /g)	VW	22	±3.3	16	±2.9	17	±3.4	13	±2.7

Material und Methoden

Milchzusammensetzung und - gerinnungseigenschaften

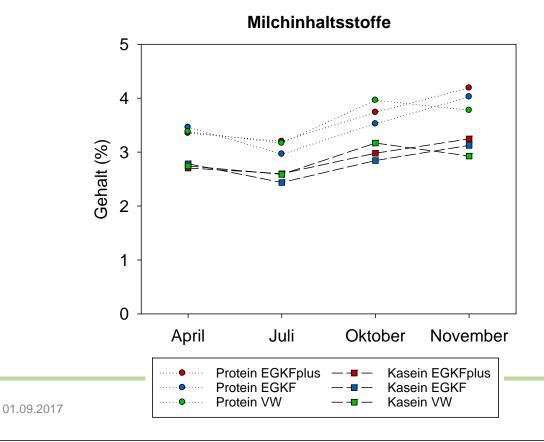
Probenahme der Morgen- und Abendmilch, Analyse der Milchzusammensetzung (Fett, Protein, Kasein) mittels Infrarotspektroskopie


Analyse Gerinnungseigenschaften (Gerinnungszeit, Gerinnungsrate, Gallertenfestigkeit) mittels Lattodinamografo


01.09.2017

Systemvergleich Milchproduktion - Hohenrain II

73


Gerinnungseigenschaften im Vergleich

EGKFplus EGKF VW

Vergleich der Zusammensetzung von Protein und Kasein

Schlussfolgerungen

- Die Fütterungssysteme beeinflussen die Milchzusammensetzung und – gerinnungseigenschaften nicht signifikant
- Laktationsstadium und Saison zeigen einen signifikanten Einfluss auf die Milchzusammensetzung und – gerinnungseigenschaften
- Weitere Auswertungen sind nötig um den Rückgang der Milchinhaltsstoffe im Juni zu ergründen

75